Transfer of radionuclides to wildlife within the ICRP system of protection

Panel Discussion

Joint IES-ICRP Symposium Aomori, Japan, October 4, 2016

> David Copplestone Secretary, ICRP Committee 5

Fig. 1.1. Processes affecting radionuclide behaviour in ecosystems. Based on: Whicker, F.W., Schultz, V., 1982. Radiecology: Nuclear Energy and the Environment, Vol. 1. CRC Press, Boca Raton, FL.

Parallel pathways

ICRP 108

WILDLIFE GROUP	RAP		
Large terrestrial mammals	Deer		
Small terrestrial mammals	Rat		
Aquatic birds	Duck		
Amphibians	Frog		
Freshwater pelagic fish	Trout		
Marine fish	Flatfish		
Terrestrial insects	Bee		
Marine crustaceans	Crab		
Terrestrial annelids	Earthworm		
Large terrestrial plants	Pine tree		
Small terrestrial plants	Wild grass		
Seaweeds	Brown seaweed		

Table 1.1. Elements and their radioisotopes considered in this report.

Radionuclides considered

Element		Isotopes
Ag	Silver	Ag-110m
Am	Americium	Am-241
Ba	Barium	Ba-140
С	Carbon	C-14
Ca	Calcium	Ca-45
Cd	Cadmium	Cd-109
Ce	Cerium	Ce-141, Ce-144
Cf	Californium	Cf-252
CI	Chlorine	Cl-36
Cm	Curium	Cm-242, Cm-243, Cm-244
Co	Cobalt	Co-57, Co-58, Co-60
Cr	Chromium	Cr-51
Cs	Caesium	Cs-134, Cs-135, Cs-136, Cs-137
Eu	Europium	Eu-152, Eu-154
H	Tritium	H-3
I	Iodine	I-125, I-129, I-131, I-132, I-133
Ir	Iridium	Ir-192
K	Potassium	K-40
La	Lanthanum	La-140
Mn	Manganese	Mn-54
Nb	Niobium	Nb-94, Nb-95
Ni	Nickel	Ni-59, Ni-65
Np	Neptunium	Np-237
P	Phosphorus	P-32, P-33
Pa	Protactinium	Pa-231
Pb	Lead	Pb-210
Po	Polonium	Po-210
Pu	Plutonium	Pu-238, Pu-239, Pu-240, Pu-241
Ra	Radium	Ra-226, Ra-228
Ru	Ruthenium	Ru-103, Ru-106
S	Sulphur	S-35
Sb	Antimony	Sb-124, Sb-125
Se	Selenium	Se-75, Se-79
Sr	Strontium	Sr-89, Sr-90
Tc	Technetium	Tc-99
Te	Tellurium	Te-129m, Te-132
Th	Thorium	Th-227, Th-228, Th-230, Th-231, Th-232, Th-234
U	Uranium	U-234, U-235, U-238
Zn	Zinc	Zn-65
Zr	Zirconium	Zr-95

Concentration ratios (biota/media – air, water, soil, sediment etc.)

Allometry/biological scaling

• Guidance

Wildlife Transfer Database

	ww.wildlifetransferdatabase.org		₽☆	a. 🛯 🚺	S ÷ (5 🚺 ma 🍋 📥
Box Simple Online						Cther Bookman
International At of Radioecolog	omic Energy Agency & International Union ists		Wild	llife Tran	sfer Para	meter Database
						Help
	If you are not registered, Register Now					
	If you have forgotten your login details please email us and we will send you a reminder (Passwo	rd Reminder)				
	User Name	dc				
	Password	•••••				
	Login					

his database collates data to provide parameter values for use in environmental radiological assessments to estimate the transfer of radioactivity to wildlife. The database has been updated today (12/12/13). Full details of the update will be nade available soon. There may be some minor changes with the data over the next few weeks as further evaluation of the changed data takes place. If you have any queries please contact us at the wildlifetransfer@gmail.com address. We will ut a note here when the database update is complete.

he database was started to aid both:

i) the International Atomic Energy Agency (IAEA) in the production of a handbook on wildlife transfer parameters (IAEA Technical Report Series now in press); and ii) the derivation of transfer parameter values for the International Commission on Radiological Protections (ICRP) list of Reference Animals and Plants (RAPs) (ICRP Publication 114).

'he database has been designed and supported by the following organisations:

- · Environment Agency, England and Wales
- Norwegian Radiation Protection Authority, Norway
- · Centre for Ecology and Hydrology, NERC, UK
- University of Stirling, UK
- The STAR Radioecology Network of Excellence

ICRP 108

Family level so some have a few, some lots of species

Where no data, used wildlife group from database

WILDLIFE GROUP	RAP	
Large terrestrial mammals	Deer	
Small terrestrial mammals	Rat	
Aquatic birds	Duck	
Amphibians	Frog	
Freshwater pelagic fish	Trout	
Marine fish	Flatfish	
Terrestrial insects	Вее	
Marine crustaceans	Crab	
Terrestrial annelids	Earthworm	
Large terrestrial plants	Pine tree	
Small terrestrial plants	Wild grass	
Seaweeds	Brown seaweed	

- Use an available CR value for an organism of similar taxonomy within a given ecosystem for the radionuclide under assessment (preferred option)
- Use an available CR value for a similar Reference Organism within a given ecosystem for the radionuclide under assessment (preferred option)
- Use an available CR value for the given Reference Organism for an element of similar biogeochemistry. Use an available CR value for biogeochemically similar elements for organisms of similar taxonomy
- Use an available CR value for biogeochemically similar elements available for a similar Reference Organism
- Use allometric relationships, or other modelling approaches, to derive appropriate CRs. Assume the highest available CR (least preferred option)
- Use the CR for the same organism in a different ecosystem (least preferred option).

www.ICRP.org

